Senin, 19 Januari 2015

pembangkit listrik tenaga surya

Bagaimana Cara Kerja Pembangkit Listrik Tenaga Surya?

Kebanyakan dari kita tidak berpikir banyak tentang darimana kita mendapatkan energi listrik, hanya tahu listrik tersedia dan berlimpah. Listrik yang dihasilkan oleh pembakaran bahan bakar fosil seperti batu bara, minyak dan gas bumi, memancarkan karbon dioksida, nitrogen oksida dan sulfur oksida.
Pembangkit Listrik Tenaga Surya, sumber gambar: www.renewablepowernews.com
Ilmuwan percaya bahwa proses tersebut berkontribusi terhadap perubahan iklim dan global warming. Energi panas matahari atau Energi Surya merupakan energi yang bebas karbon, sebagai alternatif terbarukan tidak seperti yang  dihasilkan dengan bahan bakar fosil seperti batu bara dan gas. 

Antara tahun 1984 dan 1991, Amerika Serikat membangun sembilan pembangkit listrik energi surya seperti di Gurun Mojave California, dan hari ini mereka terus memberikan kapasitas gabungan sebesar 354 megawatt per tahun, daya yang digunakan dalam 500.000 rumah di California.
Diperkirakan oleh US National Laboratories Energi Terbarukan dari tenaga panas matahari bisa menyediakan ratusan gigawatt listrik, sama dengan lebih dari 10 persen dari permintaan listrik di Amerika Serikat.

Lalu, Bagaimana Cara Kerja Pembangkit Listrik Energi Surya untuk menghasilkan listrik yang ramah lingkungan dan tanpa menghasilkan karbon? Mari kita cari tahu!


Pembangkit listrik panas matahari menghasilkan listrik secara tidak langsung. Panas dari sinar matahari dikumpulkan dan digunakan untuk memanaskan cairan. Uap yang dihasilkan dari fluida dipanaskan generator yang menghasilkan listrik. Ini mirip dengan cara pembakaran bahan bakar fosil-pembangkit listrik bekerja kecuali uap yang dihasilkan oleh panas yang dikumpulkan bukan dari pembakaran bahan bakar fosil.

Sistem Energi Surya
Ada dua jenis sistem energi surya: pasif dan aktif. Sistem pasif tidak memerlukan peralatan, seperti ketika panas menumpuk di dalam mobil ketikadiparkir di bawah sinar matahari. Sedangkan sistem yang aktif memerlukan beberapa cara untuk menyerap dan mengumpulkan radiasi matahari dan kemudian menyimpannya.

Pembangkit listrik termal tenaga surya adalah sistem aktif. Ada beberapa kesamaan dasar dari beberapa jenis pembangkit tenaga surya yakni: Cermin memantulkan dan mengkonsentrasikan sinar matahari, dan penerima mengumpulkan energi matahari serta mengubahnya menjadi energi panas. Sebuah generator kemudian  digunakan untuk menghasilkan listrik dari energi panas ini.

Beberapa Bentuk Panel Surya:

tenaga surya bentuk parabola
Pembangkit tenaga Surya Berbentuk Parabola, sumber gambar:www.solarthermalmagazine.com
pembangkit listrik panel surya
Pembangkit Listrik Tenaga Surya Berbentuk Datar, sumber gambar:
pembangkit listrik tenaga surya
Pembangkit Tenaga Surya berbentuk Setengah Pipa, sumber gambar: www.solarthermalmagazine.com
Jenis yang paling umum dari pembangkit listrik panas matahari, termasuk pembangkit  di Gurun Mojave California, menggunakan desain berbentuk parabola untuk mengumpulkan radiasi matahari. Kolektor ini dikenal sebagai sistem konsentrator linear, dan terbesar mampu menghasilkan 80 megawatt listrik.
Komponen Penting dari Pembangkit Listrik Tenaga Surya:

gambar diagram sistem tenaga surya
Diagram Prinsip Kerja Sistem Tenaga Surya, sumber gambar: www.pre.ethz.ch
#1. Cermin
Cermin dibentuk seperti setengah pipa dan linear, berbentuk reflektor parabola ditutupi dengan lebih dari 900.000 cermin dari utara-selatan secara sejajar dan mempunyai poros putaran mengikuti matahari ketika bergerak dari timur ke barat di siang hari.  
Karena bentuknya, jenis pembangkit ini bisa mencapai suhu operasi sekitar 750 derajat F (400 derajat C), mengkonsentrasikan sinar matahari pada 30 sampai 100 kali intensitas normal perpindahan panas-cairan atau air/uap pipa. Cairan panas yang digunakan untuk menghasilkan uap, dan uap kemudian memutarkan turbin sebagai generator untuk menghasilkan listrik.
#2. Menara/Tower

Menara listrik bergantung pada ribuan heliostats, yang besar, cermin datar matahari sebagai pelacakan, untuk fokus dan mengkonsentrasikan radiasi matahari ke penerima menara tunggal. Seperti halnya pada palung cermin parabola, transfer cairan panas atau uap dipanaskan dalam receiver (menara yang mampu mengkonsentrasikan energi matahari sebanyak 1.500 kali), kemudian diubah menjadi uap dan digunakan untuk menghasilkan listrik dengan turbin dan Generator.

Desain menara listrik masih dalam pengembangan, akan tetapi suatu hari nanti bisa direalisasikan sebagai pembangkit listrik grid-connected memproduksi sekitar 200 megawatt listrik per tower.
 
#3. Mesin
Dibandingkan cermin parabola dan menara listrik, sistem mesin adalah produsen kecil (sekitar 3 sampai 25 kilowatt). Ada dua komponen utama: konsentrator surya dan unit konversi daya (mesin / genset). Mesin ini menunjuk dan melacak matahari dan mengumpulkan energi matahari,sserta mampu mengkonsentrasikan energi sekitar 2.000 kali.  
Sebuah penerima termal, serangkaian tabung diisi dengan cairan pendingin (seperti hidrogen atau helium), berada di antara piring dan mesin. Hal ini bertujuan untuk menyerap energi surya terkonsentrasi dari piringan, kemudian mengkonversi panas dan mengirimkan panas ke mesin di mana berubah menjadi listrik.

Penyimpanan Energi Panas
 
Sistem panas matahari adalah solusi energi terbarukan yang menjanjikan karena matahari adalah sumber daya yang melimpah. Kecuali dimalam hari. Atau saat matahari terhalang oleh awan. Sistem penyimpanan energi panas tekanan tinggi pada tangki penyimpanan cairan digunakan bersama dengan sistem panas matahari untuk memungkinkan pembangkit menyimpan energi potensial listrik. Penyimpanan off-peak adalah komponen penting untuk efektivitas pembangkit listrik panas matahari.


Tiga teknologi TES  (Thermal Energy Storage) primer telah diuji sejak 1980-an ketika  pembangkit listrik termal pertama dibangun dengan sistem langsung dua-tangki, sistem tidak langsung dua-tank dan sistem termoklin tunggal-tank.

Dalam sistem langsung dua-tangki, energi panas matahari disimpan tepat di tempat yang sama dengan  transfer cairan panas yang dikumpulkan. Cairan ini dibagi menjadi dua tank, satu tangki penyimpanan pada suhu rendah dan yang lain pada suhu tinggi.
Cairan yang disimpan dalam tangki suhu rendah berjalan melalui kolektor surya pembangkit listrik di mana dipanaskan dan dikirim ke tangki suhu tinggi. Cairan disimpan pada suhu tinggi dikirim melalui penukar panas yang menghasilkan uap, yang kemudian digunakan untuk menghasilkan listrik di generator. Dan setelah melalui penukar panas, cairan kemudian kembali ke tangki suhu rendah.

Sebuah sistem tidak langsung dua-tangki berfungsi pada dasarnya sama dengan sistem langsung kecuali bekerja dengan berbagai jenis transfer panas cairan, biasanya dengan harga yang mahal atau tidak dimaksudkan untuk digunakan sebagai cairan penyimpanan. Untuk mengatasi hal ini, sistem tidak langsung melewati cairan suhu rendah melalui penukar panas tambahan.


Berbeda dengan sistem dua tangki, sistem termoklin tunggal-tank menyimpan energi panas sebagai padatan, biasanya berbentuk pasir silika. Di dalam sebuah tangki tunggal, bagian padat disimpan dari suhu rendah ke suhu tinggi, dalam gradien suhu, tergantung pada aliran cairan. 
Untuk tujuan penyimpanan, transfer cairan panas mengalir ke bagian atas tangki dan mendingin karena perjalanan ke bawah, keluar sebagai cairan suhu rendah. Untuk menghasilkan uap dan menghasilkan listrik, proses dibalik.

Sistem panas matahari yang menggunakan minyak mineral atau garam cair sebagai media transfer panas yang utama untuk TES, tapi sayangnya tanpa penelitian lebih lanjut, sistem yang berjalan di atas air/uap tidak dapat menyimpan energi panas.  

Beberapa Penerapan Sederhana Pembangkit Tenaga Surya

# Rumah Kaca Energi Surya
 
Green House Tenaga surya, sumber gambar: www.triplepundit.com

Ide menggunakan bahan massa termal - bahan yang memiliki kapasitas untuk menyimpan panas - untuk menyimpan energi surya berlaku untuk lebih dari sekedar surya skala besar pembangkit listrik termal dan fasilitas penyimpanan. Idenya dapat bekerja dalam sesuatu yang lebih sederhana seperti rumah kaca.

Semua rumah kaca sebagai perangkap energi matahari di siang hari, biasanya dengan manfaat menghadap ke selatan dan atap miring untuk memaksimalkan paparan sinar matahari. Tapi setelah matahari terbenam, rumah kaca panas matahari dapat mempertahankan panas termal dan menggunakannya untuk menghangatkan rumah kaca di malam hari.

Bebatuan, semen dan air atau barel berisi air semua dapat digunakan sebagai alat sederhana, bahan pasif massa termal (heat sink), menangkap panas matahari di siang hari dan memancar kembali di malam hari.

Aspirasi yang lebih besar? Menerapkan ide-ide yang sama yang digunakan dalam pembangkit listrik panas matahari (meskipun pada tingkat yang jauh lebih kecil). Rumah kaca panas matahari, juga disebut rumah kaca surya aktif, memerlukan dasar-dasar yang sama seperti sistem termal surya lain: kolektor surya, tangki penyimpanan air, tabung atau pipa (dimakamkan di lantai), pompa untuk memindahkan media perpindahan panas (udara atau air) dalam kolektor surya untuk penyimpanan dan listrik (atau sumber daya lain) untuk daya pompa.
 
Cara Kerja Rumah Kaca Panas surya:
Dalam satu skenario, udara yang mengumpul di puncak atap rumah kaca ditarik melalui pipa dan di bawah lantai. Pada siang hari, udara ini panas dan menghangatkan tanah. Pada malam hari, udara dingin ditarik ke dalam pipa. Tanah hangat memanaskan udara dingin, yang pada gilirannya memanaskan rumah kaca. Atau, air kadang-kadang digunakan sebagai media transfer panas. Air dikumpulkan dan solar dipanaskan dalam tangki penyimpanan eksternal dan kemudian dipompa melalui pipa-pipa untuk menghangatkan rumah kaca.
# Cerobong Asap Tenaga Surya
Cerobong Asap Tenaga Surya, sumber gambar: topgreencontractors.com


Sama seperti rumah kaca panas matahari, cara untuk menerapkan teknologi panas matahari untuk kebutuhan sehari-hari digunakan pula untuk cerobong asap panas matahari, atau cerobong termal yang memanfaatkan bahan massa termal
Cerobong termal pasif sistem ventilasi surya, yang berarti nonmechanical. Contoh ventilasi mekanis termasuk ventilasi seluruh rumah yang menggunakan ventilasi dan saluran untuk membuang udara kotor dan udara segar. Melalui prinsip pendinginan konvektif, cerobong termal memungkinkan udara dingin sementara mendorong udara panas dari dalam ke luar. Dirancang berdasarkan pada kenyataan bahwa udara panas naik, mengurangi panas yang tidak diinginkan selama seharian dan melakukan pertukaran interior (hangat) udara untuk eksterior (dingin) udara.

Cerobong termal biasanya terbuat dari hitam, massa termal berongga dengan bukaan di bagian atas untuk udara panas berperan sebagai knalpot. Bukaan inlet lebih kecil dari outlet pembuangan dan ditempatkan pada ketinggian rendah sampai tinggi sedang di kamar. Ketika udara panas naik lolos melalui eksterior knalpot outlet, baik ke luar atau ke dalam tangga terbuka atau atrium. Karena ini terjadi, sebuah updraft menarik udara dingin masuk melalui lubang.

Dalam menghadapi pemanasan global, kenaikan biaya bahan bakar dan permintaan yang semakin berkembang untuk energi, kebutuhan energi diperkirakan akan meningkat hampir setara dengan 335 juta barel minyak per hari, dan sebagian besar untuk listrik
Salah satu hal yang besar tentang tenaga panas surya adalah bahwa hal tersebut diperlukan sekarang, tidak menunggu lagi. Dengan mengkonsentrasikan energi surya dengan bahan reflektif dan mengubahnya menjadi listrik, pembangkit listrik panas matahari modern, jika diadopsi hari ini sebagai bagian tak terpisahkan dari pembangkit energi, mungkin mampu menjadi sumber listrik untuk lebih dari 100 juta orang selama 20 tahun ke depan. Semua dari satu sumber daya terbarukan paling besar yakni matahari.
Saat ini teknologi pembangkit tenaga surya sudah sangat pesat untuk mengetahui lebih banyak mengenai hal ini cek di link berikut. Penerapannya sendiri sudah sangat beragam seperti lampu jalanan yang menggunakan panel surya dan banyak lainnya. 
sumber :
http://www.gomuda.com

prinsip kerja ups( uninterrupteble power supples )

Setiap PC membutuhkan daya listrik. Kalau aliran listrik (main power) terputus, PC akan mati (tidak berfungsi). Fungsi dasar UPS (Uninterruptible Power Supply) adalah menyediakan suplai listrik SEMENTARA ke beban (PC) tanpa terputus pada saat main power nya tidak bekerja agar seluruh proses dapat dihentikan dengan benar, seluruh data dapat disimpan dengan aman, dan komputer dapat dimatikan dengan benar. Jadi fungsi UPS itu BUKAN agar user tetap dapat bekerja.

UPS memiliki dua sumber daya listrik : Primary Power Source dan Secondary Power Source. Salah satunya berasal dari main power (stop kontak / PLN), satunya dari baterai UPS. Di dalam UPS terdapat Switch yang mengatur sumber daya listrik mana yang digunakan untuk menyediakan suplai listrik ke beban (PC). Jika Primary Power Source tidak berfungsi, Switch akan mengaktifkan Secondary Power Source secara otomatis. Begitu juga sebaliknya jika Primary Power Source sudah kembali berfungsi.

PSU komputer membutuhkan arus listrik AC, sedangkan arus listrik dari baterai adalah DC. Oleh karena itu, di dalam UPS terdapat Inverter yang mengubah arus DC dari baterai menjadi arus AC. Di dalam UPS juga terdapat Rectifier yang mengubah arus AC dari main power menjadi arus DC untuk mengisi baterai pada saat main power bekerja.



Gambar 1 : Diagram paling simpel dari UPS

Udah pake UPS pas listrik mati kok PC tetep restart? Jangankan pas PLN mati, pas PLN hidup aja PC bisa restart sendiri.

Ada beberapa jenis gangguan suplai daya listrik ke PC antara lain :

1. Noise
Ini kalo tegangan (voltase) naik/turun tapi cuma sedikit (persentasenya kecil). Kalo standar 220 volt, sekitar 200 - 240 volt itu masih bisa dianggap noise. Kalopun selisih banyak, biasanya bertahap (gak langsung drop banget atopun tinggi banget). Noise yang macem begini biasa diatasi pake AVR. Tapi ya itu, AVR pun ada kelasnya. Ada yang cuma model sirkuit harga 50 ribuan, ada yang servo-motor harga 200 ribuan, ada yang ferro-resonant harga 700 ribuan (untuk 500VA semua loh). Ada harga ada rupa lah. PSU yang bagus juga biasanya sanggup ngatasi masalah Noise walopun gak pake AVR di luar PC.



Gambar 2 : Sinyal AC yang terganggu oleh Noise

2. Blackout
Ini kalo main power (PLN) tidak bekerja. Fungsi dasar UPS untuk mengatasi Blackout. Kalo mau ngetes fungsi UPS yang paling dasar ini ya cabut aja kabel power UPS nya dari stop kontak pas komputernya nyala. Tinggal diliat komputernya mati/restart gak.

3. Brownout / Sag
Ini kalo tegangan (voltase) dari main power turun (drop) dan naik lagi (kembali) dalam waktu yang sangat cepat. Dropnya bisa nyampe separo dari yang seharusnya, dan waktunya hanya sepersekian detik. Kita kadang bisa mendeteksi adanya Brownout ini ketika lampu di ruangan seperti berkedip.

Penyebab Brownout pada umumnya adalah karena ada tambahan beban berat (heavy load) di jaringan listrik, misalnya ada yang nyalain mesin las listrik atau mesin produksi kapasitas besar. Tambahan bebannya itu gak harus di rumah / kantor kita lho, bisa aja tetangga kita yang nyalain mesin trus pengaruh ke listrik kita lewat jaringan PLN.

Brownout ini lebih berpotensi menimbulkan masalah dibanding Blackout. UPS murahan belum tentu bisa ngatasi masalah Brownout ini. Yang harus diingat, kemampuan UPS untuk mengatasi Brownout ini TIDAK BISA dites dengan cara memutus main power ke UPS & menyambungnya kembali walaupun dalam waktu yang sangat singkat. Dulu UPS yang kualitasnya kurang bagus saya colokin ke stavolt, komputernya dinyalain, trus power switch dari stavoltnya di-off & on-kan secepat mungkin, komputer gak mati / restart. Tapi pas lampu di ruangan kedip, komputernya tetep restart juga.

4. Surge & Spike
Kebalikan dari Brownout / Sag, ini kalo tegangan (voltase) dari main power melonjak dan turun lagi (kembali) dalam waktu yang sangat cepat. Naiknya bisa nyampe puluhan kali dari yang seharusnya, dan waktunya hanya sepersekian detik. Jadi kalo tegangan normal listrik kita 220 volt, surge ini bisa bikin jadi 2000 volt atau bahkan 10000 volt.

Penyebab Surge pada umumnya adalah karena ada berhentinya beban berat (heavy load) di jaringan listrik, misalnya pas mesin las listrik atau mesin produksi kapasitas besar dimatiin. Surge juga bisa terjadi ketika main power kembali nyala setelah terjadinya Blackout.

Istilah Spike lebih sering dipake untuk lonjakan tegangan akibat petir (lightning strikes). UPS berkualitas tinggi biasanya juga dilengkapi dengan Surge Protector.

JENIS - JENIS UPS

Pada dasarnya, UPS cuma ada 2 jenis, yaitu OFFLINE dan ONLINE. Perbedaannya adalah pada sumber daya listrik mana yang jadi Primary Power Source, mana yang jadi Secondary Power Source.

Pada UPS jenis OFFLINE, sumber listrik primer adalah stop kontak / PLN, sumber listrik sekunder adalah inverter (dari baterai). Beberapa yang termasuk istilah lain ataupun varian dari OFFLINE UPS ini antara lain : Standby UPS, Ferroresonant-Standby UPS, Line-Interactive UPS, Voltage & Frequency Dependent (VFD) UPS, Voltage Independent (VI) UPS.

Karakteristik penting yang ada pada Offline UPS adalah adanya Switch Time atau Transfer Time, yaitu waktu yang diperlukan oleh Switch untuk pindah dari sumber listrik primer ke sumber listrik sekunder pada saat sumber listrik primer dianggap gagal berfungsi, sehingga ada jeda waktu dimana beban tidak mendapat listrik.



Gambar 3 : Offline UPS
Garis putus - putus menunjukkan sumber listrik sekunder


Offline UPS generasi sekarang biasanya memiliki Transfer Time kurang dari 4 milidetik (4 ms). Cukupkah Transfer Time segitu? Tergantung PSU nya. Di PSU ada spesifikasi Hold Time atau Holdup Time yang menunjukkan berapa lama PSU masih bekerja sebelum benar - benar mati jika aliran listrik terputus.

Penjelasan soal Hold Time atau Holdup Time bisa dilihat di threadnya Bung Khurios2000 yang udah di-sticky. Yang penting Transfer Time nya UPS harus lebih kecil daripada Hold Time nya PSU. Adanya Transfer Time membuat sebagian orang tidak menganggap Offline UPS sebagai UPS karena tidak benar - benar "uninterruptible".

Sepanjang pengalaman saya, Transfer Time 4 ms biasanya cukup untuk PSU abal-abal sekalipun. Cara membuktikannya ya sama dengan cara membuktikan kemampuan UPS mengatasi Blackout seperti yang sudah dijelaskan di atas.
Pada UPS jenis ONLINE, sumber listrik primer adalah inverter (dari baterai). Inverter bekerja terus - menerus menyediakan listrik dari baterai untuk beban (PC), sedangkan rectifier dari AC ke DC bekerja terus - menerus untuk mengisi baterai. Itu sebabnya juga disebut DOUBLE CONVERSION UPS atau DOUBLE CONVERSION ONLINE UPS. Kalau main power tidak berfungsi, hanya rectifier dari AC ke DC yang berhenti bekerja, sedangkan kerja inverter tidak berubah (tidak ada Transfer Time / Switch Time). UPS jenis ini juga disebut Voltage & Frequency Independent (VFI) UPS karena tegangan dan frekuensi outputnya tidak dipengaruhi oleh input.

Pada Online UPS juga terdapat Switch yang otomatis mengambil aliran listrik dari sumber listrik sekunder (langsung dari PLN) jika inverter / baterai tidak bekerja. Biasanya Switch ini juga bisa difungsikan secara manual (manual bypass) untuk maintenance baterai. Tidak adanya Transfer Time / Switch Time membuat sebagian orang menyebut Online UPS sebagai "True UPS".



Gambar 4 : Online UPS
Garis putus - putus menunjukkan sumber listrik sekunder



SPESIFIKASI UPS

Kalo milih UPS, ada spesifikasi yang bisa dibaca di box / manual / website nya. Di sini cuma dibahas beberapa spesifikasi yang penting untuk diperhatikan.

1. UPS Type / Topology
Jenis UPS ini yang paling penting. Intinya: ONLINE atau OFFLINE? Biasanya, kualitas inverter di Online UPS secara umum lebih baik daripada di Offline UPS. Hal ini karena diasumsikan inverter di Offline UPS hanya berfungsi kadang - kadang dan dalam waktu yang relatif singkat. Jadi kalo kualitasnya gak persis ama listrik PLN ya dianggap gak terlalu berisiko merusak PC. Beda dengan Online UPS yang inverternya bekerja terus - menerus, jadi kualitas outputnya harus bener - bener bagus.

2. Load Rating (Capacity & Run Time)
Kapasitas UPS tinggal disesuaikan dengan kebutuhan. Mau dipake berapa PC? Total daya berapa Watt? Yang harus diingat, kapasitas UPS (juga perhitungan beban) ini bisa dinyatakan sebagai Apparent Power, bisa juga sebagai True Power.

True Power = Power Factor x Apparent Power

Biasanya Apparent Power dinyatakan dalam satuan VA (Volt-Ampere), sedangkan True Power biasa dinyatakan dalam satuan Watt. Jadi ada UPS yang nulis spec Maximum Load-nya 600VA (480 Watt). Artinya Apparent Power = 600VA, True Power = 480Watt, Power Factor = 0,8. Kalo di spec UPS cuma ada Apparent Power (pake satuan VA), untuk amannya ambil Power Factor (faktor daya) = 0,6.

UPS yang bagus biasanya dia punya tabel / gambar Run Time seperti ini.

Tabel 1 : Run Time Chart

Artinya, kalo PLN mati pas baterai UPS nya penuh (100%), trus dipasang beban 600VA, UPS bisa menyediakan listrik selama 5,8 menit. Kalo bebannya 300VA, bisa nyala 14 menit. Yang pasti UPS gak akan bisa menyediakan listrik di atas beban maksimumnya. Kalo dari tabel di atas, bukan berarti UPS itu bisa nyala 3 menitan kalo bebannya 800VA, tapi malah gak nyala samasekali.
Sebagian UPS mungkin gak menyediakan Run Time Chart seperti itu, tapi menyebutkan Typical Run Time at Full Load dan Typical Run Time at Half Load.

3. Output Voltage & Frequency
Udah tau khan? Yang pasti harus sama dengan standar tegangan listrik untuk PC (di kita 220 volt, 50 Hz).

4. Electrical Waveform Output
Nah, ini yang sering kurang diperhatikan. Bentuk gelombang yang ideal untuk arus bolak - balik (AC) adalah Sinusoidal (Sinewave). Bentuk gelombang yang paling jelek adalah Squarewave. Tapi sampai saat ini belum ada Inverter murah yang bisa menghasilkan Sinewave Output.

Untuk menekan harga UPS biasanya pada Offline UPS digunakan Inverter yang menghasilkan Modified Squarewave. Bentuk gelombangnya dibuat mendekati (mirip) Sinewave. Ada yang menyebutnya "Stepped approximation to a sinewave", "Pulse-width modified squarewave", "Modified stepwave", atau "Modified sinewave".



Gambar 5 : Electrical Waveform Type


Sekali lagi, karena diasumsikan inverter di Offline UPS hanya berfungsi kadang - kadang dan dalam waktu yang relatif singkat, bentuk gelombang yang bukan sinusoidal itu dianggap cukup aman untuk PC.

Cara gampang untuk ngetes bentuk gelombang output UPS adalah pasang lampu TL di UPS, trus cabut kabel power UPS nya dari stop kontak. Kalo lampunya kedip - kedip atau berdengung, itu tanda bentuk gelombangnya bukan sinusoidal. Tapi itu tergantung kualitas ballast & lampunya juga sih. Kalo mau pasti ya dites pake alat yang namanya oscilloscope.

Untuk ONLINE UPS udah hampir pasti menghasilkan bentuk gelombang sinusoidal karena Inverternya bekerja terus menerus. Karena itu harga ONLINE UPS gak ada yang murah.

Btw saya belum pernah tau ada Offline UPS yang outputnya True Sinewave yang harganya di bawah Rp 2 juta (kurs Rp 9000/US$), bahkan untuk kapasitas cuma 500-750VA.

5. Transfer Time
Yang ini udah disinggung di atas tadi, cuma ada di Offline UPS. Yang penting angkanya lebih kecil daripada Hold Time nya PSU yang dipake.

6. Power Conditioning
Ini adalah kemampuan UPS untuk "memuluskan" aliran listrik dari main power sebelum diteruskan ke beban (PC). Ini terutama untuk OFFLINE UPS. Yang paling mendasar adalah Voltage Regulation (untuk mengatasi noise). Hampir semua Offline UPS sekarang udah built-in AVR (Automatic Voltage Regulator). Tapi ya seperti yang sudah disebutkan di atas, AVR yang ada di dalam UPS juga macem - macem kelasnya. UPS yang bagus biasanya bisa diatur tingkat sensitivitas dari AVR nya.

Fitur berikutnya yang ditambahkan biasanya adalah Surge Suppression (untuk mengatasi surge / spike).

Untuk ONLINE UPS, kualitas output samasekali lepas dari kualitas input (dalam kondisi beroperasi normal). Jadi untuk Online UPS, fitur Power Conditioning gak terlalu penting kecuali kalo di-bypass (gak pake baterai). Yang lebih penting adalah Output Voltage Regulation, karena kualitas keluaran baterai bisa berubah sesuai umur baterai.


Perlu diingat, sebagian besar penyebab masalah (hardware) pada komputer berhubungan dengan aliran listrik. Jadi, kalo mau bandingin UPS, yang penting bukan pertanyaan "UPS Anda bisa nyala berapa menit?"
Karena mau nyala berapa menit pake berapa komputer itu bisa dihitung (UPS sizing). Walopun kadang spec UPS ada yang bo'ong juga sih.

Yang penting adalah pertanyaan "Apakah UPS Anda sudah pernah gagal ?" (dalam arti komputer tetep mati / restart) ditambah pertanyaan :
- "Seberapa parah aliran listrik di tempat Anda?"
- "Berapa jam UPS & komputer Anda nyala setiap hari?"
- "Seberapa sering alarm UPS Anda bunyi?"
- "Udah berapa lama UPS itu Anda pake?"
dan yang gak kalah penting : "Komputer Anda pake PSU apa?"

Gak aneh kalo si A bilang dia pake UPS anu tapi komputer tetep mati / restart pas PLN mati, sedangkan si B pake UPS yang sama tapi gak merasa ada masalah. Yang bikin beda adalah kualitas aliran listrik di masing - masing lokasi.
Sebagai gambaran, kualitas listrik PLN di kantor Anda biasanya termasuk paling baik kalau kantor Anda ada di daerah perkotaan, pakai trafo sendiri (tiga fasa, daya terpasang di atas 200 KVA). Sedikit di bawahnya adalah yang tiga fasa tapi trafonya dipake rame - rame (daya terpasang 23 - 200 KVA). Di bawahnya lagi adalah yang instalasi PLN nya satu fasa (daya terpasang di bawah 23 KVA) tapi masih di daerah perkotaan. Yang paling parah kalo rumah Anda jauh dari kota, jauh dari jaringan tiga fasanya PLN. Masih mending kalo rumah Anda yang pertama narik kabel dari trafo satu fasanya (paling dekat ke trafo satu fasa).

Agak susah diprediksi kalo kantor Anda pake genset terus. Walopun kualitas aliran listrik dari PLN di negara kita belum terjamin, tapi masih ada standarnya lah. Pake genset sendiri lebih berpotensi menimbulkan masalah.

Sekedar sharing, kantor saya (toko retail) 12 jam kerja pake genset terus. Genset rakitan, seken pula (100 KVA). Walhasil banyak gangguannya seperti tegangan & frekuensi naik-turun. Komputer jadi sering mati / restart. Padahal semua udah pake Offline UPS yang untuk ukuran orang semarang termasuk "bermerk" dan "mahal" (600VA harga 900 ribuan). Yang paling gampang dilihat kalo pas pindah dari PLN ke genset atau sebaliknya, hampir pasti restart. Sama juga kalo pas lampu di ruangan keliatan kedip.

Mulai deh, PSU pada jebol (emang sih PSU abal - abal semua), harddisk gak kedetect, motherboard juga rusak. Awalnya saya kira kapasitas UPS kurang, jadi coba ganti yg kapasitas lebih gede (merk & tipe sama), ternyata gak ngaruh. Coba tipe lain, merk lain (yang setara), masih sama saja. Ditambah servo-motor AVR (abal - abal) juga sami mawon.

Akhirnya coba "merk internasional" yang "direkomendasikan", sampe sekarang udah lebih dari 2 tahun belum pernah bikin komputer restart apalagi mati kalo pas ada gangguan listrik. UPS nya masih yang jenis OFFLINE lho, juga outputnya masih "Stepped approximation to a sinewave". Harganya sekarang malah cuma 700 ribuan untuk 500VA. Kebetulan juga udah beberapa bulan ini kantor saya pake PLN terus, gensetnya standby ajah.

Peranan PSU jelas penting, karena arus listrik ke komponen - komponen PC itu diatur oleh PSU. Kesimpulannya, kalo mau ngetes kualitas UPS, cobalah di tempat yang kualitas jaringan listriknya paling jelek (biasanya di kampung / permukiman yang jauh dari pusat kota), pake PSU abal - abal yang paling murah. Baru ntar ketauan kualitas UPS nya.

UPDATE 6 MARET 2007

Menurut standar BS EN 62040-3:2001 ada tiga jenis UPS utama (istilah yg standar) :

1. VFI (Voltage and Frequency Independent)

Disebut demikian karena tegangan dan frekuensi output tidak dipengaruhi oleh tegangan dan frekuensi input. Ini yg biasa dikenal dengan nama Online UPS atau Double Conversion UPS.

2. VFD (Voltage and Frequency Dependent)
Disebut demikian karena tegangan dan frekuensi output dipengaruhi oleh (sama dengan) tegangan dan frekuensi input. Ini yg biasa dikenal dengan nama Standby UPS atau Offline UPS. Skema seperti gambar 3 diatas tapi tanpa filter.

3. VI (Voltage Independent)
Disebut demikian karena disertai filter/stabilizer/AVR sehingga tegangan output distabilkan, sedangkan frkuensi output nya tetap mengikuti frekuensi input. Menurut beberapa website UPS, ini yang disebut juga UPS Line-Interactive. Skemanya seperti gambar 3 diatas.

Sedangkan menurut website APC dan PC Guide, disebut UPS Line-Interactive bila dalam UPS tersebut konverternya hanya ada satu, sekaligus berfungsi sebagai Rectifier (AC-DC) dan juga Inverter (DC-AC). Skemanya seperti gambar dibawah ini.



Gambar 6 : Line-Interactive UPS (dengan single konverter menurut beberapa sumber)
Garis putus - putus menunjukkan sumber listrik sekunder

Adapun Ferroresonant-Standby UPS adalah Standby UPS yg transfer switch dan filter/stabilizer/AVR nya digantikan oleh sebuah ferroresonant transformer. Keuntungannya adalah Transfer Time yang lebih singkat (bisa diasumsikan 0 milidetik), karena bila arus listrik dari Primary Power Source putus tiba2, energi yg tersimpan di medan magnetik transformer tetap mensuplai listrik output sampai Secondary Power Source nya bekerja.



Gambar 7 : Ferroresonant-Standby UPS
Garis putus - putus menunjukkan sumber listrik sekunder

Saya berpendapat, Line-Interactive maupun Ferroresonant Standby UPS itu semua hanya varian dari Standby / Offline UPS, karena secara prinsip Primary Power Source nya adalah utility power (PLN). Tapi tentu saja penambahan fitur akan memperbaiki kinerja (kehandalan) UPS.
SUMBER :  ordinary-king.blogspot.coM

Minggu, 18 Januari 2015

makalah tentang amplifier

BAB I
PENDAHULUAN

A.    latar belakang
Penguat (bahasa Inggris: Amplifier) adalah rangkaian komponen elektronika yang dipakai untuk menguatkan daya (atau tenaga secara umum). Dalam bidang audio, amplifier akan menguatkan signal suara yaitu memperkuat signal arus (I) dan tegangan (V) listrik dari inputnya menjadi arus listrik dan tengangan yang lebih besar (daya lebih besar) di bagian outputnya. Besarnya penguatan ini sering dikenal dengan istilah gain. Nilai dari gain yang dinyatakan sebagai fungsi penguat frekuensi audio, gain power amplifier antara 20 kali sampai 100 kali dari signal input.Jadi gain merupakan hasil bagi dari daya di bagian output (Pout) dengan daya di bagian inputnya (Pin) dalam bentuk fungsi frekuensi. Ukuran dari gain, (G) ini biasanya memakai decibel (dB). Dalam bentuk rumus hal ini dinyatakan sebagai berikut: G(dB)=10log(Pout/Pin)).Pout adalah Power atau daya pada bagian output, dan Pin adalah daya pada bagian inputnya.Dalam bagian rangkaian amplifier pada proses penguatan audio ini terbagi menjadi dua kelompok bagian penting yaitu bagian penguat signal tegangan (V) kebanyakan menggunakan susunan transistor darlington, dan bagian penguat arus susunannya transistor paralel dan masing-masing transisistor berdaya besar dan menggunakan sirip pendingin untuk membuang panas ke udara, sekarang ini banyak yang menggunakan transistor simetris komplementer.
BAB II
PEMBAHASAN

 A. Power Amplifier
a.Kopetensi
Dari hasil praktik ini diharapkan mahasiswa dapat:
1.Mengetahui jenis power amplifier.
2.Mengamati sinyal output power amplifier
3.Mengamati karaktristik power amplifier
4.Menganalisis dan menyimpulkan data praktikum.
b. Peralatan Yang Digunakan
1.CRO
2.AFG
3.Power amplifier
4.Speaker / Load
5.Kabel
c. Teori Singkat
Power AMPLIFIER, adalah perangkat yang memperkuat sinyal2 electromagnetic menjadi audio, kerja power ampli disini adalah memperkeras sinyal yg lemah menjadi kuat dalam arti divice yg terhubung diperkuat(suara).Power amplifier bertugas sebagai penguat akhir dari preamplifier menuju ke driver speaker. Amplifier pada umumnya terbagi menjadi dua yaitu Power Amplifier dan Integrated Amplifier. Power Amplifier adalah penguat akhir yang tidak disertai dengan tone control (volume, bas, treble), sebaliknya integrated amplifier adalah penguat akhir yang telah disertai dengan tone control.
d. Langkah Kerja
1.Siapkan alat dan bahan yang dibutuhkan.
2.Rangkailah AFG, power amplifier, dummy load dan CRO seperti gambar
3.Setelah rangkaian terpasang semua, kemudian hidupkan semua alat.
4.Atur frekuensi keluaran dari AFG mulai dari 20 Hz sampai 20 KHz dengan amplitudo yang selalu
sama yaitu 1 Vp-p.
5.Atur power amplifier (bass, trebel, middle dan balance) hingga bentuk gelombang yang ditampikan di CRO bagus.
6.Bandingkan antara gelombang input dari AFG dan gelombang output dari dummy load.
7.Catat hasil pengamatan.
e. Anallisa Data
Dari data tebal pengamatan dapat kita ketahui bahwa:
P (daya) pada pengamatan tersebuat adalah :
>pada saat Fin = 1 KHzRL = 8 Ohm
Vin = 1,2 x 5 mV
Vout = 1,4 x 1 V
Maka Veff = 0,707 x 1,4 x 1 V = 0,9898
Sehingga P = (Veff)2 / (2 x RL)
= (0,9898)2 / (2 x 8)
= 0,0612 W
>pada saat Fin = 20 KHz RL = 8 Ohm
Vin = 2,2 x 5 Mv
Vout = 2,2 x 0,5 V
Maka Veff = 0,707 x 2,2 x 0,5 V = 0,7777
Sehingga P = (Veff)2 / (2 x RL)
= (0,7777)2 / (2 x 8)
= 0,0377 W


B. Pre Amp Head
a)      Kopetensi
Dari hasil praktik ini diharapkan mahasiswa dapat:
1.Mengetahui prinsip kerja dari rangkaian preamp head
2.Mengetahui penguatan pada preamp head
3.Mengetahui respon frekuensi dari preamp head
b)      .Peralatan Yang Digunakan
1.CRO
2.AFG
3.bread board
4.Power supply dc 12 v
Komponen :
1.Op amp TL 072
2.Capasitor 1uF, 56n, 68p,220n
3.Resistor 1k, 56k, 100k
4.Saklar spdt
5.Kabel jumper secukupnya
c)      Teori Singkat
Preamp head adalah rangkaian penguat awal yang berfungsi menguatkan sinyal listrik audio dari head tape. Sinyal ini diperoleh dari gesekan pita magnetik dengan lilitan head yang akan menghasilkan fluktuasi pada lilitan head, sehingga timbul GGL yang merupakan sinyal listrik suara. Sinyal yang didapatkan dari head ini masih sangat lemah, sehingga harus dikuatkan terlebih dahulu dan disesuaikan impedansinya sebelum masuk ke perangkat pengatur audio selanjutnya.
Ada berbagai macam jenis dan type preamp head. Semua dibutuhkan sesuai dengan fungsi dan kebutuhan yang diinginkan. Ada yang dibangun dengan transistor, ada pula yang dengan IC opamp atau penguat lainya. Type penguatan pun bermacam-macam. Tetapi pada intinya adalah menguatkan semua frekuensi sinyal (full range), agar didapatkan bandwidth output yang lebar sehingga memudahkan untuk pemilihan penguatan pada frekuensi tertentu.
Salah satu contoh jenis penguatan yang digunakan dalam preamp adalah non-inverting amplifier. Prinsip utama rangkaian penguat non-inverting adalah seperti yang diperlihatkan pada gambar 1 berikut ini. Seperti namanya, penguat ini memiliki masukan yang dibuat melalui input non-inverting. Dengan demikian tegangan keluaran rangkaian ini akan satu fasa dengan tegangan inputnya. Untuk menganalisa rangkaian penguat op-amp non inverting, caranya sama seperti menganalisa rangkaian inverting.Dengan menggunakan aturan 1 (Perbedaan tegangan antara input v+ dan v- adalah nol (v+ - v- = 0 atau v+ = v- )) dan aturan 2 (Arus pada input Op-amp adalah nol (i+ = i- = 0)), kita uraikan dulu beberapa fakta yang ada, antara lain :
vin = v+
v+ = v- = vin ..... lihat aturan 1.
Dari sini ketahui tegangan jepit pada R2 adalah vout – v- = vout – vin, atau iout = (vout-vin)/R2. Lalu tegangan jepit pada R1 adalah v- = vin, yang berarti arus iR1 = vin/R1.Hukum kirchkof pada titik input inverting merupakan fakta yang mengatakan bahwa :
iout + i(-) = iR1
Aturan 2 mengatakan bahwa i(-) = 0 dan jika disubsitusi ke rumus yang sebelumnya, maka diperoleh
iout = iR1
dan Jika ditulis dengan tegangan jepit masing-masing maka diperoleh(vout – vin)/R2 = vin/R1 yang kemudian dapat disederhanakan menjadi :
vout = vin (1 + R2/R1)
Jika penguatan G adalah perbandingan tegangan keluaran terhadap tegangan masukan, maka didapat penguatan op-amp non-inverting :… (2)
Impendasi untuk rangkaian Op-amp non inverting adalah impedansi dari input non-inverting op-amp tersebut. Dari datasheet, TL072 diketahui memiliki impedansi input Zin = 108 to 1012 Ohm.
Pada gambar di atas terlihat bahwa rangkaian tersebut merupakan rangkaian penguat non-inverting, yang mana sinyal input dan output adalah satu fasa. Dari rangkaian ini juga menggunakan umpan balik negative, yang juga merupakan umpan balik tegangan. Sebagian dari sinyal output dikembalikan lagi ke input melalui tahanan umpan balik 56K dan juga kapasitor 56n.
Dari gambar di atas terdapat saklar pada rangkaian umpan baliknya. Bila saklar ditutup, berarti nilai tahanan pada umpan balik akan menjadi kecil. Secara teori hal ini menyebabkan penguatan pada preamp akan semakin besar. Adanya kapasitor pada umpan balik menjadikan bandwidth rangkaian menjadi lebar.
d)     Langkah Kerja      
1. Berdoa sebelum memulai praktikum
2.Pelajari dengan seksama penjelasan dan gambar yang diberikan oleh dosen pengampu
3.Rangkaikan komponen seperti gambar pada gambar rangkaian praktikum di atas.
4.Hubungkan input rangkaian rangkaian dengan AFG, dan output rangkaian pada probe  CRO seperti pada skema di bawah ini dan berikan supply tegangan dari power supply 12v simetris.
5.Tutup saklar S1 pada rangkaian
6.Naikan nilai frekuensi AFG sesuai tabel pengamatan, dengan tegngan output maksimal tanpa cacat
7.Amati besarnya tegangan sinyal output rangkaian pada layar CRO, dan catat hasilnya pada table 1
8.Setelah mencatat tegangan output, segera mengukur besarnya tegangan input dari AFG dan catat pula hasilnya pada table 1
9.Ulangi langkah 5 sampai dengan 8 pada nilai frekuensi yang telah ditentukan pada tabel1
10.Buka saklar s1, dan ulangi pengamatan sesuai dengan langkah 6 sampai 8
11.Konsultasikan setiap proses dan data dari hasil praktikum kepada dosen
12.Setelah selesai, kembalikan semua peralatan dan komponen pada tempatnya.
13.Membuat kesimpulan.
Dari table di atas, hanya didapatkan data besarnya vin dan vout saja. Adapaun besarnya vin didapatkan dari besarnya vout maksimal tanpa cacat. Dalam hal ini, saat vout terlihat tanpa cacat pada layar CRO, lalu di ukur besarnya vin dari AFG dengan menginputkanya pada CRO.
•Besarnya penguatan pada table 1 di atas didapatkan dengan perhitungan dengan rumus
Sebagai contoh perhitungan adalah sbb :
Pada saat frekuensi 100 Hz, tegangan output maksimal tanpa cacat adalah 34mV dan pada
saat itu tegangan input terukur adalah 2mV, maka penguatannya adalah :
A=3.4mV/2mV = 17 kali
•Dari table di atas dapat dilihat bahwa respon penguatan maksimal terjadi saat input
diberikan input 300 Hz. Pada frekuensi ini tegangan input yang diberikan tanpa cacat adalah
10,5 vp-p dengan output sebesar 380 vp-p yaitu mencapai 36,2 kali.
C.    pengontrol
1)      Basic input controls
Dibawah setiap inputnya, biasanya terdapat beberapa pengatur putar (knobs, pots). Pertama biasanya sebuah pengatur gain atau disebut trim. Input akan mengatur sinyal dari peralatan luar dan dan kontrol ini akan mengatur besarnya penguatan atau atenuasi sinyal yang diperlukan agar level sinyalnya memadai untuk proses selanjutnya. Pada langkah ini, dimana sebagian besar noise dan interferensi akan berpengaruh besar, dimana biasanya mikropon mempunyai gangguan kurang lebih +50 dB. Balanced inputs dan konektor-konektor, seperti jenis XLR ,Tip-Ring-Sleeve (TRS), jack 1/4 inci, akan mengurangi masalah gangguan ini. Kemudian akan banyak titik masuk setelah tingkat buffer/gain tersebut, dimana jika ada send atau return dari prosesor luar hanya akan berpengaruh pada kanal yang ada tersebut. titik masukan (inser points) biasanya digunakan dengan efek untuk mengatur amplitudo sinyal, seperti pembatas derau (noise gates), pelebar (expander) dan pengompres (compressor).
2)      Auxiliary send routing
The Auxiliary send mengarahkan sebuah sinyal yang masuk terpisah ke sebuah jalur auxiliary yang dapat digunakan dengan peralatan luar. . Auxiliary sends , apakah itu pre-fader or post-fader,dimana level pada sebuah pre-fade send diatur dengan the Auxiliary send control, sedangkan post-fade sends tergantung pada posisi channel fadernya. . Auxiliary sends dapat pula untuk mengirim sinyal ke prosesor luar seperti reverb, yang kemudian dapat diumpan masukkan kembali melalui kanal yang lain atau dimasukkan ke auxiliary returns yang ada pada mixer tersebut. Pre-fade auxiliary sends dapat digunakan untuk menyediakan sebuah monitor mix pada musisi diatas panggung, dimana pada monitor mix ini mandiri dari jalur mixing utama.

Papan mixing yang dipakai untuk pertunjukan langsung.
3)      Channel EQ
Pengaturan kanal yang lebih lanjut yaitu channel EQ. Pengaturan ini mengatur ekualisasi nada-nada frekuensi nada rendah (bass), nada menengah (midrange) dan nada tinggi (treble). Pada sebagian besar konsul mixing berukuran lebar (24 kanal atau lebih) biasanya mempunyai sweep equalization dalam satu atau lebih jalur frekuensi yang ada yang disebut parametric equalizer. Mixer dengan ukuran lebih kecil mempunyai beberapa atau bahkan tidak mempunyai sama sekali equalizer ini. Equalizer juga mengatur agar level frekuensi siara yang diatur tidak terjadi cliping yang akan mengganggu kualitas suara yang dihasilkan kanal tersebut. beberapa mixer masih mempunyai sebuah kontrol equalizer umum pada tingkat outputnya.
4)      Subgroup and mix routing
Setiap kanal pada mixer mempunyai sebuah rotary audio tapper berbentuk potensiometer atau potensio meter geser untuk mengontrol level volume tiap kanal agar lebih mudah. Banyaknya input menentukan juga berapa audio fader yang ada. Kemudian dari setiap kanal yang ada disatukan ke jalur main "mix", atau masih dibagi lagi ke beberapa submix. Kompleksitas pengaturan ini tergantung pada aplikasi apa mixer tersebut akan digunakan. Dan juga, pada mixer tersebut disediakan "insert point" untuk setiap bus atau juga bisa pada keseluruhan mix.
D.    Catu daya
Pengertian catu daya secara umum, catu daya adalah suatu sistem filter penyearah (rectifier-filter) yang mengubah tegangan AC menjadi tegangan DC murni. Banyak rangkaian catu daya  yang berlainan yang dapat digunakan untuk pekerjaan tersebut. Komponen dasar yang digunakan untuk rangkaian yang lebih sederhana adalah transformator, penyearah (dioda), resistor, kapasitor, dan inductor. catu  yang diatur secara lebih kompleks dapat menambahkan transistor atau trioda sebagai pengindra-tegangan dan pengontrolan tegangan, ditambah dengan dioda zener atau tabung VR untuk menyediakan tegangan acuan (reference). Sistem penyearah sendiri dibagi menjadi dua, yaitu penyearah setengah gelombang dan penyearah gelombang penuh.
E.     Mekanik
Mekanika adalah salah satu cabang ilmu dari bidang ilmu fisika yang mempelajari gerakan dan perubahan bentuk suatu materi yang diakibatkan oleh gangguan mekanik yang disebut gaya. Mekanika adalah cabang ilmu yang tertua dari semua cabang ilmu dalam fisika. Tersebutlah nama-nama seperti Archimides (287-212 SM), Galileo Galilei (1564-1642), dan Issac Newton (1642-1727) yang merupakan peletak dasar bidang ilmu ini. Galileo adalah peletak dasar analisa dan eksperimen dalam ilmu dinamika. Sedangkan Newton merangkum gejala-gejala dalam dinamika dalam hukum-hukum gerak dan gravitasi.
Mekanika teknik atau disebut dengan mekanika terapan adalah ilmu yang mempelajari penerapan dari prinsip-prinpsip mekanika. Mekanika terapan mempelajari analisis dan disain dari sistem mekanik.
Biomekanika didefinisikan sebagai bidang ilmu aplikasi mekanika pada system biologi. Biomekanika merupakan kombinasi antara disiplin ilmu mekanika terapan dan ilmu-ilmu biologi dan fisiologi. Biomekanika menyangkut tubuh manusia dan hampir semua tubuh mahluk hidup. Dalam biomekanika prinsip-prinsip mekanika dipakai dalam penyusunan konsep, analisis, disain dan pengembangan peralatan dan sistem dalam biologi dan kedoteran.
F.     Stereo Graphic Equalizer
a)      Kopetensi
Dari hasil praktik ini diharapkan mahasiswa dapat:
1.Mengetahui pengertian TENTANG equalizer.
2.Mengetahui cara kerja equalizer gapic stereo20 Ch.
3.Mengamati karaktristik equliser grapic stereo 20 ch.
4.Menganalisis dan menyimpulkan data praktikum.
b)      Peralatan Yang Digunakan
1.CRO
2.Equaliser stereo 20 ch
3.AFG
4.Kabel
c)      Teori Singkat
Equalizer ada dalam sistem tata suara dalam dua bentuk : Equalizer grafik dan Equalizer parametrik. Keduanya dipakai dengan filter-filter End-cut.qualizer parametrik mempunyai pemutar paling tidak tiga parameter yakni : frekuensi, Perbesar-potong (boost/cut) dan Q(lebar jalur). Equalizer tersebut lumrah ditemukan berada dalam setiap kanal dalam konsul mixing, namun ada juga yang dibuat terpisah.Equalizer grafik mempunyai penggeser-penggeser yang mengacu pada sebuah kurva dari response terplot pada sebuah grafik. Pada sistem tata suara biasanya didesain pada tengah-tengah 1/3 oktaf. Filter-filter suara End-cut akan membatasi lebar jalur melewati batasnya, dimana akan mencegah gangguan-gangguan subsonik dan pengaruh RF atau ganggunag-gangguan dari pengatur lampu yang dapat mengganggu sistem suara.
Bagian-bagian dari filter-filter End-cut seringkali termasuk dengan equalizer grafik untuk memberikan pengaturan penuh. Sebuah penekan umpan balik (Feedback suppresor) adalah jenis filter yang akan secara otomatis mendeteksi dan menekan umpan balik suara dengan memotong frekunsi suara mana yang menyebabkannya.
Rangkaian parametric equalizer merupakan jenis filter aktif dengan
menggunakan op-amp, dimana frekuensi respon yang dihasilkan adalah berupa
band-pass filte r. Alat ini dirancang dengan menggunakan state variable filter,
yang dapat digunakan untuk merubah gain pada range ? 15dB, menggeser
frekuensi center dan bandwidth -nya pada range antara 50 Hz sampai dengan 10
kHz yang perubahannya dapat dilakukan secara independent. Pada pengujian dengan oscilloscope didapatkan grafik dari pergeseran gain yaitu pada range ? 15 dB. Sedangkan untuk frekuensi center dan bandwidth dapat digeser antara 50 Hz sampai dengan 10 kHz. Tetapi pada uji dengar masih muncul noise, walaupun perubahan suara sudah nampak.
Rangkaian resonansi
Fr = 1/ 2Π √LC
Faktor kualitas (Q)
Q = 2Π FCL/ Re
BBw = Fr / Q
Untuk Rangkaian Penguat dan Peredam
Bila Rp pada posisi 1, maka Vo = Rf . Re. Vi / Re
Sehingga rangkaian berfungsi sebagai penguat
Bila Rp pada posisi 2 maka Vo = Re.Vi / Re + R
Sehingga berfungsi sebagai peredam
BAB III
PENUTUP

Kesimpulan
               Power
 Power amplifier merupakan suatu alat elektronik yang berfungsi memperbesar daya input sehingga saat output di keluarkan melalui dummy load atau speaker akan mampu mengetarkan memberan speaker sehingga menimbulkan bunyi yang dapat kita nikmati.
- Besarnya daya (P) dapat diketahui dengan rumus :
V eff
P = ------------------
2 x RL
Dimana : V eff = Vout x 0,707
RL = besarnya impedansi beban ( dummy load/speaker)
Pre Amp Head
Dari hasil praktikum ini dapat didimpulkan bahwa:
1.Prinsip kerja dari rangkaian preamp head ini adalah sbb : rangkaian yang digunakan adalah Opamp non-inverting amplifier, yang mana sinyal input dan outputnya adalah satu fasa.
2.Penguatan yang dihasilkan dari preamp head ini bervariasi. Mulai dari 3,9 kali sampai 36,2 kali. Penguatan terbesar terjadi pada frekuensi 300 Hz. Pada frekuensi tinggi, penguatan cenderung menurun.
3.respon frekuensi dari rangkaian preamp ini dapat dilihat pada gambar grafik di bawah ini.
                          Equalizer
1.Equalizer ada dalam sistem tata suara dalam dua bentuk : Equalizer grafik dan Equalizer parametrik.
2.Equalizer grafik mempunyai penggeser-penggeser yang mengacu pada sebuah kurva dari response terplot pada sebuah grafik. Pada sistem tata suara biasanya didesain pada tengah-tengah 1/3 oktaf.
3.Filter-filter suara End-cut akan membatasi lebar jalur melewati batasnya, dimana akan mencegah gangguan-gangguan subsonik dan pengaruh RF atau ganggunag-gangguan dari pengatur lampu yang dapat mengganggu sistem suara.
4.Dari data pengatan tersebut maka dapat dikatakan equalizer tersebut bisa dikatakan dalam keadaan baik, karena pada table pengamatan sesuai dengan karekteistiknya bahwa pada posisi min maka equalizer tersebuat akan meredam penguatan, sedangkan pada posisi max maka equalizer tersebut akan melakukan pengutan.
sumber :http://kumpulanmakalah-fokus.blogspot.com